Course Type	Course Code	Name of Course	L	T	P	Credit
DC	NPHC505	NUMERICAL METHODS AND COMPUTER PROGRAMMING	3	0	0	3

Course Objective

- To introduce students with the numerical procedures of fundamentals of mathematical operations and tools for computer programming.
- To prepare them for coding in any language for applications in any physical field or subject.

Learning Outcomes

Upon successful completion of this course, students will be able to:

- design computer programming for various physical problems and solve it numerically.
- improve programming skills with hands on experience with a computer programming language.
- accomplish the methods of approximation and errors, roots of equations, curve fitting, interpolation methods, calculus and Fourier approximation

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome		
1	Methods of approximation and errors: Truncation and round-off errors; Accuracy and precision.		Understand the cause of numerical errors and estimating numerical errors and idea about accuracy and precision.		
2	Computer Programming: Computer programs in suitable languages, based on above topics.		Understand the basics of computer programs and learn coding.		
3	Roots of Equations: Bracketing methods (false position and bisection), Iteration methods (Newton-Raphson). Systems of linear algebraic equations: inversion and LU decomposition methods. Gauss elimination method.		Learn the solution of system of linear equations by various numerical methods		
4	System of Nonlinear equations: Bisection method; Newton's method; Fixed-point iteration method;		Learn to solve of system of non-linear equations by numerical methods		
5	Curve fitting: Least squares regression, linear and nonlinear regressions		Helps for numerical estimate the roots of equations using various method		
6	Interpolation Methods: interpolating polynomials. Newton's divided difference		Helps in the understanding of interpolation method		
7	Numerical differentiation: Finite difference approximation; Finite difference using Taylor series; Differentiation using Curve fitting;		Learn the Numerical differentiation by various numerical methods		
8	Numerical integration : Rectangle and midpoint methods; Trapezoidal method; Simpson's method; Gauss quadrature;	4	Learn the Numerical integration by various numerical methods.		
9	Ordinary differential equations: Euler's method, Runge-Kutta methods. Boundary value and Eigenvalue problems. Partial differential equations: Laplace's equation and solutions. Few applications		Helps to solve ordinary differential equations using various numerical methods.		
10	Fourier approximation: Introduction, Discrete Fourier and Fast-Fourier transforms	4	Helps to understand the numerical approximation using Fourier method.		
	Total	42			

Text Books:

- 1. Shastry, S.S., "Numerical Methods", Prentice Hall Inc., India, 1998.
- 2. Richard L. Burden and J. Douglas Faires, "Numerical Analysis", Brooks/Cole, Cengage Learning, 1993.
- 3. Santanu Saha, "Numerical Analysis with Algorithms and Programming"; CRC press, 2016

Reference Books:

- 1. Noble Ben, "Numerical Methods", New York International Publications, New York, 1964.
- 2. Buckingham R.A., "Numerical Methods", Sir Isaac Pitman Sons. Ltd., London, 1957.
- 3. Uri M. Ascher and Chen Greif, "A first Course in Numerical Methods" SIAM, 2011.
- 4. Bakhvalov, N.S., "Numerical Methods", Mir. Pub., Moscow, 1977.
- Amos Gilat and Vish Subramiam, "Numerical Methods for Engineers and Scientists: An Introduction with Applications Using MATLAB"; Wiley, 2014